Autonomous Landing of a Multirotor Micro Air Vehicle on a High Velocity Ground Vehicle

نویسندگان

  • Alexandre Borowczyk
  • Duc-Tien Nguyen
  • André Phu-Van Nguyen
  • Dang Quang Nguyen
  • David Saussié
  • Jerome Le Ny
چکیده

While autonomous multirotor micro aerial vehicles (MAVs) are uniquely well suited for certain types of missions benefiting from stationary flight capabilities, their more widespread usage still faces many hurdles, due in particular to their limited range and the difficulty of fully automating the deployment and retrieval. In this paper we address these issues by solving the problem of the automated landing of a quadcopter on a ground vehicle moving at relatively high speed. We present our system architecture, including the structure of our Kalman filter for the estimation of the relative position and velocity between the quadcopter and the landing pad, as well as our controller design for the full rendezvous and landing maneuvers. The system is experimentally validated by successfully landing in multiple trials a commercial quadcopter on the roof of a car moving at speeds of up to 50 km/h.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autonomous Landing for a Multirotor UAV Using Vision

We describe our work on multirotor UAVs and focus on our method for autonomous landing. The paper describes the design of our landing pad and its advantages. We explain how the landing pad detection algorithm works and how the 3D-position of the UAV relative to the landing pad is calculated. Practical experiments prove the quality of these estimations.

متن کامل

Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a...

متن کامل

Lidar Sensors for Autonomous Landing and Hazard Avoidance

Lidar technology will play an important role in enabling highly ambitious missions being envisioned for exploration of solar system bodies. Currently, NASA is developing a set of advanced lidar sensors, under the Autonomous Landing and Hazard Avoidance (ALHAT) project, aimed at safe landing of robotic and manned vehicles at designated sites with a high degree of precision. These lidar sensors a...

متن کامل

An Onboard Monocular Vision System for Autonomous Takeoff, Hovering and Landing of a Micro Aerial Vehicle

In this paper, we present an onboard monocular vision system for autonomous takeoff, hovering and landing of a Micro Aerial Vehicle (MAV). Since pose information with metric scale is critical for autonomous flight of a MAV, we present a novel solution to six degrees of freedom (DOF) pose estimation. It is based on a single image of a typical landing pad which consists of the letter “H” surround...

متن کامل

NEEC Research: Toward GPS-denied Landing of Unmanned Aerial Vehicles on Ships at Sea

This paper reports on a Naval Engineering Education Center (NEEC) design-build-test project focused on the development of a fully autonomous system for landing Navy unmanned aerial vehicles (UAVs) on transiting ships at sea. Our NEEC team of engineering students researched image processing techniques, estimation frameworks, and control algorithms to collaboratively learn and train in Navy-relev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1611.07329  شماره 

صفحات  -

تاریخ انتشار 2016